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through Estrogen Receptor-Independent Mechanisms
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Extracellular signals such as growth factors,
hormones, and environmental compounds
elicit an array of effects on a cell that include
proliferation, differentiation, stress, and death
(1–3). In many cases, external stimuli signal a
cell, resulting in the activation or inhibition of
transcription factors such as activator protein-1
(AP-1) and nuclear factor κB (NFκB), which
form complexes and regulate gene expression
(4,5). The resultant change in gene expression
leads to an overall effect on the cell, dictating
its final interpretation of the external cue.
Determining what signals target transcription
factors and how they do so is key to under-
standing the specificity of gene expression and
resultant biological responses.

AP-1 is a generic term used to describe
transcription factors that bind specifically to a
DNA enhancer sequence [TGA(G/C)TCA]
called the 12-O-tetradecanylphorbol-13-
acetate responsive element (TRE), which is
also referred to as the AP-1 site. In addition,
AP-1 components can bind and potentiate
transcription from AP-1–related DNA ele-
ments (e.g., cAMP response element) (6).
Members of the Jun and Fos families of pro-
teins dimerize to preferentially bind AP-1 sites
with high affinity; hence, each dimer combi-
nation makes up an AP-1 protein. Upon stim-
ulation, Jun and Fos proteins recruit
p300/CBP coactivators that recruit other

coactivators such as the p160s, which directly
bind nuclear hormone receptors like the
estrogen receptor (ER) (7). p300/CBP helps
stimulate gene expression by two major mech-
anisms: making direct interactions with core
RNA polymerase machinery and using their
intrinsic histone acetylase activity to unravel
chromatin structure. Both mechanisms work
toward ultimately recruiting the RNA poly-
merase complex to the sites of AP-1–regulated
genes (8). Conversely, AP-1–mediated gene
expression is ablated when Jun or Fos family
members associate with co-repressors such as
silencing mediator of retinoic acid and thyroid
hormone receptor, which is known to interact
with Sin3 and recruit histone deacetylases,
condensing chromatin and terminating tran-
scription (9). AP-1 is a ubiquitous protein
that can be induced by multiple stimuli, lead-
ing to diverse cellular effects. For example,
proliferation, differentiation, cellular stress,
and death have all been associated with ele-
vated AP-1 activity (5,10–15). Hence, AP-1
appears to play a diverse role in the regulation
of the cell cycle. Cell type, promoter context,
associative proteins, and stimuli are factors
that cumulatively will determine the effect
AP-1 has on a cell.

Endocrine disruptors represent a class of
both natural and synthetic compounds that
exhibit hormonal activity. Organochlorines,

such as the pesticide dichlorodiphenyl-
trichloroethane (DDT) and its metabolites,
have been shown to mimic estrogen, binding
to and activating the ERs, thereby often pro-
ducing estrogen-like effects (2,16–21). DDT
and its metabolites have displayed harmful
feminizing effects on wildlife such as birds
(22,23), fish (22,24), and reptiles (22,25–27),
altering endogenous hormone levels (25,26),
elevating estrogen-regulated protein levels
(24), and reducing male phallus size (25,26).
These reports in wildlife have led to the sug-
gestion that organochlorines may alter a
number of harmful estrogen-regulated health
effects in humans such as breast cancer
(1,28–30), endometriosis (1,31–33), sponta-
neous abortion (34), reduced bone mineral
density (35), and decreased sperm counts
(36). However, many of these reports are still
controversial.

Although estrogen-like molecules are
thought to function predominantly through
ER-mediated activation of transcription via
estrogen-responsive elements (EREs), both
ERs, α and β, can interact with various cell-
cycle transcription factors such as AP-1. The
nature of the ER–AP-1 interaction depends
on the ligand, ER subtype, and AP-1 compo-
nents (37–39). Additionally, the ER can reg-
ulate AP-1 at the level of its gene expression
by promoting transcription of the c-fos gene
in the presence of the major endogenous
estrogen, 17β-estradiol (E2) (40–44). The
cross-talk between the pathways modulating
the ER and those modulating the AP-1 tran-
scription factor introduces another level of
complexity in determining the effects of hor-
monally active compounds.

Several environmental compounds that
have estrogenic activity affect various signal
transduction pathways. For example, at low
concentrations the isoflavone genistein can
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Endocrine-disrupting organochlorines, such as the pesticide dichlorodiphenyltrichloroethane
(DDT), bind to and activate estrogen receptors (ERs), thereby eliciting estrogen-like effects.
Although ERs function predominantly through activation of transcription via estrogen-responsive
elements, both ERs, α and β, can interact with various transcription factors such as activator pro-
tein-1 (AP-1). Additionally, estrogens may regulate early signaling events, suggesting that the bio-
logical effects of environmental estrogens may not be mediated through classic ER (α and β)
activity alone. We hypothesized that known environmental estrogens, such as DDT and its
metabolites, activate AP-1–mediated gene transactivation through both ER-dependent and ER-
independent means. Using two Ishikawa human endometrial adenocarcinoma cell line variants
that we confirmed to be estrogen responsive [Ishikawa(+)] and estrogen unresponsive
[Ishikawa(–)], we generated stably transfected AP-1 luciferase cell lines to identify the role of an
estrogen-responsive mechanism in AP-1–mediated gene expression by various stimuli. Our results
demonstrate that DDT and dichlorodiphenyldichloroethane (DDD) were the most potent activa-
tors of AP-1 activity; 2,2-bis(p-chlorophenyl) acetic acid failed to activate. Although stimulated in
both Ishikawa(+) and Ishikawa(–) cells by DDT and its congeners, AP-1 activation was more pro-
nounced in the estrogen-unresponsive Ishikawa(–) cells. In addition, DDT, DDD, and
dichlorodiphenyldichloroethylene (DDE) could also stimulate AP-1 activity in the estrogen-unre-
sponsive human embryonic kidney 293 cells using a different promoter context. Thus, our data
demonstrate that DDT and its metabolites activate the AP-1 transcription factor independent of
ER (α or β) status. Key words: AP-1, DDT, early signaling, estrogen receptor, Ishikawa cell line,
organochlorines. Environ Health Perspect 110:1239–1245 (2002). [Online 28 October 2002]
http://ehpnet1.niehs.nih.gov/docs/2002/110p1239-1245frigo/abstract.html



bind to and activate ERs, but at high concen-
trations it binds to and inhibits receptor tyro-
sine kinase activity (2). Organochlorine
compounds, such as DDT, the polychlori-
nated biphenyls 2´,4´,6´-trichloro- and
2´,3´,4´,5´-tetrachloro-4-biphenylol, β-hexa-
chlorohexane, and heptachlor, activate multi-
ple kinase pathways (45–52). The weakly
estrogenic polychlorinated biphenyl Arochlor
1254 has been reported to induce AP-1 activity
(53,54). In neurons, the endocrine disruptor 
β-hexachlorohexane up-regulates expression of
c-fos (55). Methoxychlor (a member of the
DDT family), catechol estrogens, and the
organochlorine kepone can stimulate expres-
sion of estrogen-responsive genes in ERα-
knockout mice treated with ICI 182,780
(56,57). Additionally, catechol estrogens pro-
mote the formation of breast tumors in ERα-
knockout mice that do not express ERβ in the
mammary tissue, indicating the involvement of
a non-ER (α or β) mechanism (58). Thus,
compounds that can induce estrogenic
responses may alter kinase signal transduction
pathways via ER-dependent and/or ER-inde-
pendent mechanisms, working through mul-
tiple mitogenic pathways. Hence, endocrine
disruptors may cause adverse health effects
due primarily to their pleiotropic nature
rather than a single endocrine-altering event.

Given the ability of the ER to interact
with AP-1 signaling and estrogenic com-
pounds to elicit early signaling events, 
we hypothesized that known estrogenic
organochlorines, such as DDT and its
metabolites, could induce AP-1–mediated
gene expression. To do this, we wanted to
develop a cell culture system that would
enable us to quickly and efficiently determine
what role, if any, the ER has in AP-1–medi-
ated signaling. This would allow us to explore
whether the estrogenicity of certain com-
pounds was responsible for their ability to
regulate AP-1 activity or ER-independent
mechanisms were additionally involved.

Here, we show that the persistent pesti-
cide DDT, along with its metabolites, acti-
vates AP-1–mediated gene expression at
environmentally relevant concentrations (i.e.,
10–50 µM) (59–61). Using a novel, stable-
reporter gene–cell system developed in our
laboratory that includes the use of estrogen-
responsive and estrogen-unresponsive cell
variants, we show the activation is indepen-
dent of classic ER-mediated mechanisms.
This effect is also seen in other cell lines
under different AP-1 promoter contexts.
Collectively, this demonstrates another level
of complexity regarding the nuclear signaling
of environmental chemicals. Although hor-
monal activity may explain some of the adverse
health effects of xenobiotics, the total effect of
these exogenous chemicals will likely be the
end result of multiple signaling pathways that

are stimulated due to the pleiotropic nature
of many environmental compounds.

Materials and Methods

Chemicals. 2,2-bis(o,p-dichlorophenyl)-1,1,1-
trichloroethane (o,p´-DDT), 2,2-bis(p,p-
ch lorophenyl ) -1 ,1 ,1- t r i ch loroethane
(p,p´-DDT), 1,1-dichloro-2-(o-chlorophenyl)-
2-(p-chlorophenyl)ethane (o,p´-DDD), 1,1-
dichloro-2,2-bis(p-chlorophenyl)ethane
(p,p´-DDD), 1,1-dichloro-2-(o-chlorophenyl)-
2-(p-phenyl)ethylene (o,p´-DDE), 2,2-bis(4-
ch lo ropheny l ) -1 ,1 -d i ch lo roe thy l ene
(p,p´-DDE), and 2,2-bis(p-chlorophenyl)
acetic acid (p,p´-DDA) were purchased from
AccuStandard (New Haven, CT). All DDT
metabolites were dissolved in DMSO. E2 and
tetradecanoyl-13-phorbol acetate (PMA) were
purchased from Sigma (St. Louis, MO) and
dissolved in DMSO or Dulbecco’s Modified
Eagle’s Medium (DMEM), respectively. ICI
182,780 was purchased from TOCRIS
(Ballwin, MO) and dissolved in DMSO.

RT-PCR analysis of ERα and ERβ
expression. Reverse-transcriptase polymerase
chain reaction (RT-PCR) analysis was per-
formed as previously described (62). Briefly,
RNA was extracted using an Ultraspec RNA
isolation kit (Biotecx Lab, Houston, TX).
Frozen cell pellets (1 × 106 cells) were lysed in
1 mL Ultraspec RNA solution. Then 0.2 mL
chloroform was added to the cell lysate and
shaken. After centrifugation, the colorless
upper aqueous phase was transferred to a new
tube. An equal volume of isopropanol was
added, and the RNA was precipitated by cen-
trifugation. The RNA was washed with 75%
ethanol and recovered in water treated with
diethylene pyrocarbonate. We checked RNA
purity by gel electrophoresis and optical den-
sity ratio (data not shown). RT-PCR was
done using a Perkin-Elmer AmpliTaq Gold
with GeneAmp RNA PCR kit following the
manufacturer’s instructions. Primers were
synthesized from Invitrogen (Carlsbad, CA).
Primers used to amplify the ERα were: 
5´-TGC CAA GGA GAC TCG CTA-3´
(nucleotides 894–912) and 5´-TCA ACA
TTC TCC CTC CTC-3´ (nucleotides
1139–1157), giving an amplified product of
263 bp. For ERβ, primer sequences were: 5´-
TTC CCA GCA ATG TCA CTA ACT-
3´(nucleotides 33–53) and 5´-TCT CTG
TCT CCG CAC AAG G-3´ (nucleotides
539–558), giving an amplified product of
525 bp. Fragments of glyceraldehyde phos-
phate-3-dehydrogenase (GADPH) were
amplified in parallel to serve as an internal
control. The primers for GADPH were: 5´-
TC ACC ATC TTC CAG GAG C-3´ and
5´-CAA GAA GGT GGT GAA GCA G-3´,
giving a PCR product of 571 bp. PCR reac-
tions were run for 30 cycles, which were in
the linear range of the reaction (data not

shown). PCR products were verified by sub-
cloning and sequencing (data not shown).

Cell culture, transient transfection, and
reporter gene assay. Ishikawa endometrial
adenocarcinoma cells were grown in Iscove’s
Modified Dulbecco’s Medium: Ham’s F12
(1:1) supplemented with 10% fetal bovine
serum (FBS), Basal Medium Eagle (BME)
amino acids, Minimum Essential Medium
Eagle (MEM) nonessential amino acids,
sodium pyruvate, penicillin–streptomycin,
and 1 × 10–10 M insulin. Human embryonic
kidney (HEK) 293 cells were grown as
previously reported in DMEM supplemented
with 10% FBS, BME amino acids, MEM
nonessential amino acids, sodium pyruvate,
penicillin-streptomycin, and 1 × 10–10M
insulin (63). Cultures of cells were transferred
to phenol red-free DMEM supplemented
with 5% dextran-coated charcoal-treated FBS
(DCC-FBS), BME amino acids, MEM
nonessential amino acids, sodium pyruvate,
and penicillin-streptomycin for 48–72 hr
before plating. Cells were plated at a density
of 2 × 106 cells/well and maintained for an
additional 24 hr in DMEM with DCC-FBS.
For estrogen dose–response assays, cells were
then transfected for 5 hr with 200 ng of
pERE2x-luciferase plasmid with or without
50 ng of pcDNA3.1-hERα or pcDNA3.1-
hERβ (485 bp) using Effectene transfection
reagent (Qiagen Inc., Valencia, CA) accord-
ing to the manufacturer’s protocol. For all
luciferase assays, we then incubated cells for
18–24 hr in DMEM with DCC-FBS in the
presence of vehicle or various chemicals as
previously described (64). When double
treatments were performed, E2 or o,p´-DDT
was added 20 min after the ICI 182,780
treatment, or various concentrations of DDT
metabolites were treated 20 min before
adding 20 ng/mL PMA. We used PMA as a
positive control because we have previously
shown that 20 ng/mL PMA activates protein
kinase C, downstream mitogen-activated
protein kinases, and AP-1 (65). The concen-
tration of ICI 182,780 used inhibits E2-stim-
ulated gene expression (66). In our results we
have shown the data from treatments using
10–50 µM DDT and its metabolites, which
gave significant activity and are environmen-
tally relevant concentrations (59–61). Cells
were then harvested and luciferase activity
was measured using 30 µL of cell extract 
and 100 µL of luciferase assay substrate
(Promega, Madison, WI) in a monolight
2010 luminometer. The data shown are an
average of at least three independent experi-
ments with 2–4 replicates.

Generation of stably transfected cell lines.
Cells were transfected for 5 hr with either
10 µg of pAP-1(PMA)-luciferase (Clontech,
Palo Alto, CA; Ishikawa cell variants) or with
pAP-1-luciferase (Stratagene, La Jolla, CA;
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HEK 293 cells) along with 1 µg of the
neomycin-resistance gene expression vector
pcDNA3.1 plasmid using Lipofectamine
lipofection reagent (Life Technologies,
Gaithersburg, MD) in 75-cm2 flasks. Forty-
eight hours after transfection, we switched cells
to a medium containing 400–1,200 µg/mL
G418 (Mediatech, Herndon, VA) and main-
tained them in this medium for 3 weeks until
the disappearance of all cells in a control, non-
transfected flask and appearance of colonies in
the transfected flasks. Colonies were pooled,
grown, and tested for luciferase activity by
incubation with 20 ng/mL PMA for 24 hr.

Statistical analysis. We analyzed data using
one-way analysis of variance and post-hoc
Tukey’s multiple comparisons with GraphPad
Prism, version 3.02 (GraphPad Software, Inc.,
San Diego, CA). We separated the data of each
Ishikawa stable cell line into two groups to
compare fold activation over negative control
(DMSO) and potentiation/inhibition of PMA-
induced activity to explore the effects of
organochlorines on a tumor promoter-stimu-
lated cascade. Because of large differences in
activation in some cases, we used a natural log
transformation to obtain normal distribution.
Statistically significant changes were deter-
mined at the p < 0.05 or < 0.001 level as indi-
cated for each figure or table.

Results

Ishikawa endometrial cell variants show dif-
ference in ERα expression. To determine the
difference between the two cell variants, we

examined endogenous ERα and ERβ expres-
sion. RT-PCR analysis revealed that ERα was
detected in Ishikawa(+) cells, but not in
Ishikawa(–) cells (Figure 1, lanes 5 and 6).
This effect was evident even after 45 cycles of
PCR (i.e., the plateau stage; data not shown).
ERβ was detected at low levels in both cell
variants (Figure 1, lanes 10 and 11). For a
biological control comparison, ERα and ERβ
expression was demonstrated in other cell
lines previously described by our lab and
others [e.g., ERα+, ERβ– (MCF-7L) 
(62,67) and ERα–, ERβ+ (MDA-MB-231)
(62,67–69), (MCF-7ADR) (62,67)].

Ishikawa(+) cells, unlike Ishikawa(–) cells,
demonstrate estrogen-mediated gene expres-
sion. The difference in estrogen response was
measured using a reporter gene assay in which
an ERE-luciferase reporter plasmid was tran-
siently transfected into the two Ishikawa cell
variants alone or in combination with an
hER(α or β) expression plasmid (Figure 2).
Increasing concentrations of E2 stimulated
luciferase activity in Ishikawa(+) cells (Figure
2A), but not in Ishikawa(–) cells, even at 10
nM (Figure 2B). In all experiments where E2
stimulated luciferase activity, the pure anti-
estrogen ICI 182,780 (100 nM) inhibited the
effects of 10 nM E2 (data not shown). The
responsiveness of the Ishikawa(–) cells could
be restored by cotransfection with either an
hERα or hERβ expression plasmid, although,
overexpression with hERβ consistently pro-
duced a lower activity profile. On the other
hand, hERβ expression slightly inhibited the

endogenous response of Ishikawa(+) cells
(Figure 2A). This phenomenon is consistent
with what other laboratories have reported
and is a result of the difference in endogenous
ER expression (70–73). The endogenous low
ERβ expression was unable to transmit an
estrogenic response (Figure 2B). Hence, the
difference in estrogen response between the
two Ishikawa cell variants is caused by a loss
of ERα expression.

DDT and its metabolites stimulate AP-1–
mediated gene expression in both Ishikawa
cell variants. To examine the effects of the ER
on AP-1–mediated gene expression by envi-
ronmental compounds, we generated from
our two Ishikawa cell variants stable cell lines
containing an AP-1–responsive promoter
linked to a luciferase reporter gene. This
allowed us to quickly and efficiently test
related cells that varied in their response to
estrogen for AP-1–induced activity by various
stimuli. Treatment of the estrogen-responsive
Ishikawa(AP-1)+ stable cells produced a sig-
nificant induction of AP-1 activity by all the
DDT, DDD, and DDE compounds in a
dose-dependent manner at the environmen-
tally relevant concentrations 25 µM and 50
µM (Figure 3A) with 50 µM o,p´-DDT being
the most potent (4.2-fold). In addition, ICI
182,780 (100 µM) potentiated o,p´-DDT (50
µM)-induced AP-1 activity 2.6 ± 0.97-fold in
Ishikawa(AP-1)+ cells (data not shown), consis-
tent with the findings that ICI 182,780 poten-
tiates AP-1–mediated gene expression (38).
Surprisingly, however, when the estrogen-
unresponsive Ishikawa(AP-1)– cells were
treated with o,p´-DDT and o,p´-DDD, we
observed a potent activation of AP-1 of
roughly 15.5-fold (Figure 3B). This result and
the fact that o,p´-DDD has virtually no ER
binding activity (19,21), indicates a non-
ER–mediated AP-1 signaling mechanism.
p,p´-DDA, a metabolite found in humans, had
no effect on AP-1 activity. When organochlo-
rine compounds were administered in con-
junction with the phorbol ester PMA and
compared to percent activation by PMA,
potentiation of AP-1 activity was seen in both
cell variants, with the Ishikawa(AP-1)– cells
once again demonstrating higher-fold stimula-
tion (Figure 3C, D). o,p ´DDD in conjuction
with PMA gave the greatest AP-1 stimulation
at 50 µM in both the Ishikawa(AP-1)+ (7.6-
fold) and Ishikawa(AP-1)– (38.1-fold) vari-
ants. Again, p,p´-DDA did not significantly
increase AP-1 activity.

DDT and its metabolites stimulate AP-1–
mediated gene expression in HEK 293 cells
under a different AP-1–responsive promoter
context. Next, we further tested this effect in
an additional estrogen-unresponsive cell line
using a different AP-1–responsive promoter
context. HEK 293 cells, which have been
shown to be estrogen unresponsive (63,64,74)
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Figure 1. RT-PCR characterization of cell types. MBA-MD-231 (lanes 2, 7, and 12), MCF-7ADR (lanes 3, 8,
and 13), MCF-7L (lanes 4, 9, and 14), Ishikawa(+) (lanes 5, 10, and 15), and Ishikawa(–) (lanes 6, 11, and 16)
were subjected to RT-PCR using primers specific for hERα (lanes 2–6), hERβ (lanes 7–11), or GAPDH
(lanes 12–16). Lanes 1 and 17 are size standards.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

MW MW

ERα ERβ GAPDH

Figure 2. Characterization of estrogen-responsive [Ishikawa(+)] and estrogen-unresponsive [Ishikawa(–)]]
cell variants. (A) Ishikawa(+) or (B) Ishikawa(–) cells were transiently transfected with 200 ng ERE-
luciferase reporter plasmid alone or ERE-luciferase reporter plus 50 ng hER(α or β) expression plasmid.
Cells were then treated with increasing concentrations of E2. Luciferase activity was measured as
described in “Materials and Methods.” Results are expressed as fold activation over vehicle. The data
shown are the results of at least three experiments with two replicates each. 
*p < 0.05, **p < 0.001; significant increases from vehicle.
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were used to make stable cell lines with a dif-
ferent AP-1-luciferase reporter construct inte-
grated into the genome as confirmed above.
As with both Ishikawa cell lines, the DDT,
DDD, and DDE metabolites in conjunction
with PMA all stimulated AP-1 significantly
versus control, whereas p,p´-DDA could not
induce an effect (Figure 4). Additionally, sig-
nificant increases were detected at 10 µM for
all activating compounds tested, raising the
possibility that further testing of multiple cell
lines or AP-1–responsive promoters could
reveal effects of these compounds at yet lower
concentrations. Unlike the Ishikawa cell vari-
ants, o,p´-DDD displayed lower activity as
compared to both o,p´-DDT and p,p´-DDE in
combination with PMA (542, 1,449, and
978% vehicle plus PMA, respectively). A sum-
mary of DDT metabolite regulation of AP-1
is shown in Table 1. DDT and its metabolites
DDD and DDE are able to consistently acti-
vate an AP-1–responsive promoter and poten-
tiate PMA-induced AP-1 activity in multiple
cell lines independent of ER status and under
different promoter contexts.

Discussion

Organochlorines represent a class of environ-
mental compounds characterized by a chlori-
nated hydrocarbon backbone motif. These
chemicals are found in pesticides, plastics,
and industrial wastes and are ubiquitous envi-
ronmental pollutants (1,2). DDT, one of
most widely used pesticides until 1973, was
banned because of its adverse effects on

wildlife (1,75). However, this chemical is still
used in many developing countries today and
exists at high concentrations along with its
metabolites and contaminants throughout the
world, including the United States, because
of long half-lives in soil, water, and the adi-
pose tissue of animals (24,28,30,75–77).

Although DDT and some of its metabo-
lites bind ERs (16,19,21), induce egg-shell
thinning in raptors (78,79), and induce estro-
gen-like effects in exposed animals and
humans (1,22,25), the mechanisms of action
of this class of synthetic compounds is still not
completely understood. Here we have shown
that DDT can directly affect the activity of
AP-1, an important cell regulatory factor.

To determine whether DDT and its
metabolites induced AP-1 activation through
an ER-mediated mechanism, we created
human endometrial adenocarcinoma Ishikawa
stable cell lines containing an AP-1–responsive
promoter linked to a luciferase reporter gene.
This novel cell system allowed us to evaluate
rapidly the signaling effects of a number of
environmental compounds. Our Ishikawa
variants provide us with the cell culture
equivalent of a comparison system similar to
the wild-type versus ER-knockout mice.
Treatment of the Ishikawa(AP-1)+ cells
revealed that the DDTs, DDDs, and DDEs
could all significantly stimulate AP-1 activity,
with the DDTs and DDDs having the great-
est activity on average. Although the DDTs
have been demonstrated to have estrogenic
activity (1,19,21), and hence, may work

though an ER–AP-1–dependent pathway, the
nonestrogenic DDDs also stimulated AP-1–
mediated gene expression, indicating an alter-
native signaling mechanism for this class of
compounds. Also, not only did treatment of
the Ishikawa(AP-1)– cells activate AP-1, but
the DDTs appeared to be more potent in this
cell line, indicating that DDT and its
metabolites can signal AP-1 in an ER-inde-
pendent mechanism. Again, DDTs and
DDDs appeared most potent, whereas in
both cell lines the metabolite p,p´-DDA gave
no significant induction. p,p´-DDA, unlike
the DDT, DDD, and DDE isoforms, pos-
sesses no central chlorines but only a car-
boxylic acid motif, suggesting the chlorine
residues are necessary.
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Figure 3. AP-1 induction by DDT metabolites in Ishikawa cells. (A,C) Ishikawa(+) and (B,D) Ishikawa(–)
cells containing a stably integrated AP-1-Luc response element were treated for 18–24 hr with vehicle
(DMSO) or various DDT metabolites with (C,D) or without (A,B) 20 ng/mL PMA. Luciferase activity was
measured as described in “Materials and Methods.” Results are expressed as relative light units (RLUs)
normalized to vehicle (A,B) or percent DMSO + PMA activity (C,D). The data shown are the results of at
least three experiments with two replicates each. 
*p < 0.05, **p < 0.001; significant increases from control. 
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Figure 4. AP-1 induction by DDT metabolites in HEK
293 cells. HEK 293 cells containing a stably inte-
grated AP-1-Luc response element were treated
for 18–24 hr with vehicle (DMSO) or various DDT
metabolites with 20 ng/mL PMA. Luciferase activity
was measured as described in “Materials and
Methods.” Results are expressed as percent DMSO
+ PMA activity. The data shown are the results of
at least three experiments with two replicates
each. 
**p < 0.001; significant increases from control.
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Table 1. Comparison of AP-1 activation by DDT
metabolites.

Treatment Ishikawa(+) Ishikawa(–)

DMSO 22.9# 17.0#

o,p´-DDT 102.7* 71.3*
p,p´-DDT 100.0* 38.7
o,p´-DDD 77.7* 126.3*
p,p´-DDD 60.7* 91.0*
o,p´-DDE 72.3* 21.7#

p,p´-DDE 41.3*# 14.5#

p,p´-DDA 23.5# 13.5#

PMA 100.0* 100.0*
o,p´-DDT + PMA 511.3*# 2176.0*#

p,p´-DDT + PMA 701.7*# 2200.3*#

o,p´-DDD + PMA 759.3*# 3810.7*#

p,p´-DDD + PMA 434.0*# 1765.7*#

o,p´-DDE + PMA 312.0*# 1195.0*#

p,p´-DDE + PMA 303.7*# 1506.3*#

p,p´-DDA + PMA 79.7* 106.0*

Chemicals were tested for induction of AP-1 activity with
or without 20 ng/mL PMA. Concentrations shown are 50
µM for all DDT metabolites. Data shown are the means
from at least three different experiments with two repli-
cates each and are represented as percent PMA activity.
*Significantly different from control (DMSO) (p < 0.05).
#Significantly different from 20 ng/mL PMA treatment 
(p < 0.05). 



Often, late-stage endocrine cancers grow in
the absence of hormones (80–82), indicating
the potential up-regulation of some other cell
survival/cell signaling mechanisms. Because our
estrogen-unresponsive cells give a stronger AP-1
activation, it is possible that the AP-1 signaling
mechanisms have been up-regulated to com-
pensate for the loss of responsiveness to estro-
gen. Regardless of which variant is tested,
treatment of cells in combination with the
tumor promoter PMA revealed that DDT and
its metabolites potentiate AP-1 activity well
beyond PMA alone. This effect could also be
seen in HEK 293 cells using a different AP-1–
responsive promoter, indicating that DDTs
additionally stimulate AP-1 in both other estro-
gen-unresponsive cell lines and under different
promoter contexts, demonstrating the preva-
lence and diversity of this environmental signal-
ing process. Significant increases in AP-1
activity were seen at lower concentrations in the
HEK 293 cells, suggesting that different cell or
AP-1 promoter contexts would reveal that the
DDTs could signal AP-1 at more widespread
concentrations. The potentiation could signify
the involvement of a DDT–AP-1 signaling cas-
cade different from tumor promoter-induced
AP-1 activation. Future experiments will deter-
mine the kind of signal (i.e., proliferation,
stress, etc.) these organochlorines are sending to
the cell and how they are signaling AP-1.

Recently, compounds of the DDT family
have been reported to affect a number of AP-1
regulated genes in vivo. Diel et al. (83)
reported that ovariectomized rats treated with
o,p´-DDT reduced the expression of clusterin,
which plays an important role in apoptosis,
similar to AP-1. The promoter region of the
clusterin gene contains two functional AP-1
sites (84). In this situation, o,p´-DDT could
potentiate members of the Jun and Fos fami-
lies of proteins that have more inhibitory
effects toward AP-1–regulated gene expres-
sion (e.g., JunB, Fra-1, Fra-2) and hence
inhibit expression of the clusterin gene, lead-
ing to a more proliferative phenotype. This
would help explain the results demonstrating
the ability of o,p´-DDT to significantly
increase uterine growth similar to E2, despite
poorly binding to the ER and displaying a
different gene expression pattern in the uterus
than E2 (83,85). Ghosh et al. (56) demon-
strated in ERα-knockout mice that methoxy-
chlor, but not E2, could still stimulate
estrogen responsive lactoferrin and glucose-6-
phosphate dehydrogenase mRNAs in the
mouse uterus despite the addition of the pure
antiestrogen ICI 182,780, indicating a non-
ER (α or β) mechanism. In addition, Das et
al. (86) demonstrated that mice treated with
p,p´-DDD, which has no ER-binding ability,
also increases lactoferrin expression, regardless
of the presence of ICI 182,780. Both the lacto-
ferrin and glucose-6-phosphate dehydrogenase

genes contain complex promoters that are
responsive to multiple stimuli, such as epider-
mal growth factor, PMA, transforming
growth factor-α, that also potentiate AP-1
activity (87). In fact, the yeast homologue of
the human c-Jun, YAP-1/PAR1, potentiates
glucose-6-phosphate dehydrogenase activity
(88). Further support for this comes from the
fact that the lactoferrin promoter contains an
AP-1–like element that has been shown to
bind the AP-1 protein (6). Collectively, these
in vivo observations combined with our in
vitro data strongly suggest that organochlo-
rine compounds such as DDT regulate gene
expression through multiple elements present
in the promoter regions of various genes.

AP-1 activation has become a marker for
a number of effects elicited initially at the
plasma membrane. External stimuli such as
growth factors, hormones, ultraviolet irradia-
tion, heavy metals, and even mechanical
stress have been implicated in the induction
of AP-1 (5,7,89–91). For example, epidermal
growth factor binds to its tyrosine kinase
receptor located at the plasma membrane,
initiating a signaling cascade that results in
the up-regulation of AP-1 activity (3).
Estrogen has been implicated in a number of
early signaling effects including activation of
G-protein–coupled receptors and Ca2+ spikes
(92–94). Cadmium stimulates AP-1–medi-
ated gene expression through an ER-associ-
ated process (95,96), further hinting at the
role of AP-1 as a potential environmental sen-
sor. Additionally, treatment with cadmium,
or other environmental estrogens such as
bisphenol A and diethylstilbestrol, has been
linked to alterations at the membrane level,
leading to activation of specific signaling cas-
cades (97,98). These responses are thought to
be mediated through plasma membrane
receptors. The effect we have reported here
suggests that organochlorine compounds,
such as DDT and its metabolites, may stimu-
late early membrane responses, similar to
other extracellular stresses, leading to gene
expression.

Here we demonstrated a novel effect of the
DDTs using a new, stable-cell reporter-gene
system. The pleiotropic nature of these
organochlorines is revealed in their ability to
stimulate expression from a classic ERE pro-
moter element (2,19), activate receptor tyro-
sine kinases as well as multiple kinase pathways
(45,47,48,50,51), inhibit L-type Ca2+ chan-
nels (99,100) and, as shown here, their capac-
ity to stimulate AP-1 activity through
non-ER–mediated mechanisms. Thus, just as
the ER appears to be a convergent point for
multiple cellular signals such as ligands
(38,101), growth factors (102–104), and cell
survival signals (105), AP-1 may function as a
transcriptional mediator of various signaling
pathways. Environmental compounds may

adversely affect the physiology of a cell by
mimicking aspects of its molecular endocrine
system. Likewise, compounds may co-opt the
cell’s physiology by altering other cell signal
regulators. Collectively, this may represent a
new approach to environmental toxicology in
which we go beyond cell damage to molecu-
lar modulators of cell responses.
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